Block row projection method based on M-matrix splitting

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison results on the preconditioned mixed-type splitting iterative method for M-matrix linear systems

Consider the linear system Ax=b where the coefficient matrix A is an M-matrix. In the present work, it is proved that the rate of convergence of the Gauss-Seidel method is faster than the mixed-type splitting and AOR (SOR) iterative methods for solving M-matrix linear systems. Furthermore, we improve the rate of convergence of the mixed-type splitting iterative method by applying a preconditio...

متن کامل

Graph Projection Block Splitting for Distributed Optimization

This paper describes a general purpose method for solving convex optimization problems in a distributed computing environment. In particular, if the problem data includes a large linear operator or matrix A, the method allows for handling each subblock of A on a separate machine. The approach works as follows. First, we define a canonical problem form called graph form, in which we have two set...

متن کامل

comparison results on the preconditioned mixed-type splitting iterative method for m-matrix linear systems

consider the linear system ax=b where the coefficient matrix a is an m-matrix. in the present work, it is proved that the rate of convergence of the gauss-seidel method is faster than the mixed-type splitting and aor (sor) iterative methods for solving m-matrix linear systems. furthermore, we improve the rate of convergence of the mixed-type splitting iterative method by applying a precondition...

متن کامل

comparison results on the preconditioned mixed-type splitting iterative method for m-matrix linear systems

consider the linear system ax=b where the coefficient matrix a is an m-matrix. in the present work, it is proved that the rate of convergence of the gauss-seidel method is faster than the mixed-type splitting and aor (sor) iterative methods for solving m-matrix linear systems. furthermore, we improve the rate of convergence of the mixed-type splitting iterative method by applying a precondition...

متن کامل

Block-Row Sparse Matrix-Vector Multiplication on SIMD Machines

The irregular nature of the data structures required to efficiently store arbitrary sparse matrices and the architectural constraints of a SIMD computer make it difficult to design an algorithm that can efficiently multiply an arbitrary sparse matrix by a vector. A new ‘‘block-row’’ algorithm is proposed. It allows the ‘‘regularity’’ of a data structure with a row-major mapping to be varied by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2018

ISSN: 0377-0427

DOI: 10.1016/j.cam.2017.08.015